Visual Servoing Platform version 3.5.0
servoViper650FourPoints2DArtVelocityLs_cur.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the articular frame
35 *
36 * Authors:
37 * Fabien Spindler
38 *
39 *****************************************************************************/
56#include <fstream>
57#include <iostream>
58#include <sstream>
59#include <stdio.h>
60#include <stdlib.h>
61
62#include <visp3/core/vpConfig.h>
63
64#if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_X11)
65
66#include <visp3/blob/vpDot2.h>
67#include <visp3/core/vpHomogeneousMatrix.h>
68#include <visp3/core/vpIoTools.h>
69#include <visp3/core/vpPoint.h>
70#include <visp3/gui/vpDisplayX.h>
71#include <visp3/robot/vpRobotViper650.h>
72#include <visp3/sensor/vp1394TwoGrabber.h>
73#include <visp3/vision/vpPose.h>
74#include <visp3/visual_features/vpFeatureBuilder.h>
75#include <visp3/visual_features/vpFeaturePoint.h>
76#include <visp3/vs/vpServo.h>
77#include <visp3/vs/vpServoDisplay.h>
78
79#define L 0.05 // to deal with a 10cm by 10cm square
80
99void compute_pose(std::vector<vpPoint> &point, std::vector<vpDot2> &dot, vpCameraParameters cam,
100 vpHomogeneousMatrix &cMo, bool init)
101{
102 vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon method
103 vpHomogeneousMatrix cMo_lagrange; // computed pose with lagrange method
104 vpPose pose;
105
106 for (size_t i = 0; i < point.size(); i++) {
107
108 double x = 0, y = 0;
109 vpImagePoint cog = dot[i].getCog();
111 y); // pixel to meter conversion
112 point[i].set_x(x); // projection perspective p
113 point[i].set_y(y);
114 pose.addPoint(point[i]);
115 }
116
117 if (init == true) {
118 pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
119 // Compute and return the residual expressed in meter for the pose matrix
120 double residual_dementhon = pose.computeResidual(cMo_dementhon);
121 pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
122 double residual_lagrange = pose.computeResidual(cMo_lagrange);
123
124 // Select the best pose to initialize the lowe pose computation
125 if (residual_lagrange < residual_dementhon)
126 cMo = cMo_lagrange;
127 else
128 cMo = cMo_dementhon;
129 }
130
131 pose.computePose(vpPose::LOWE, cMo);
132}
133
134int main()
135{
136 // Log file creation in /tmp/$USERNAME/log.dat
137 // This file contains by line:
138 // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
139 // - the 6 mesured joint velocities (m/s, rad/s)
140 // - the 6 mesured joint positions (m, rad)
141 // - the 8 values of s - s*
142 std::string username;
143 // Get the user login name
144 vpIoTools::getUserName(username);
145
146 // Create a log filename to save velocities...
147 std::string logdirname;
148 logdirname = "/tmp/" + username;
149
150 // Test if the output path exist. If no try to create it
151 if (vpIoTools::checkDirectory(logdirname) == false) {
152 try {
153 // Create the dirname
154 vpIoTools::makeDirectory(logdirname);
155 } catch (...) {
156 std::cerr << std::endl << "ERROR:" << std::endl;
157 std::cerr << " Cannot create " << logdirname << std::endl;
158 return (-1);
159 }
160 }
161 std::string logfilename;
162 logfilename = logdirname + "/log.dat";
163
164 // Open the log file name
165 std::ofstream flog(logfilename.c_str());
166
167 try {
168 vpRobotViper650 robot;
169 // Load the end-effector to camera frame transformation obtained
170 // using a camera intrinsic model with distortion
174 robot.get_eMc(eMc);
175 std::cout << "Camera extrinsic parameters (eMc): \n" << eMc << std::endl;
176
177 vpServo task;
178
180
181 bool reset = false;
182 vp1394TwoGrabber g(reset);
184 g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
185 g.open(I);
186
187 g.acquire(I);
188
189 vpDisplayX display(I, 100, 100, "Current image");
192
193 std::vector<vpDot2> dot(4);
194
195 vpImagePoint cog;
196
197 std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
198
199 for (size_t i = 0; i < dot.size(); i++) {
200 dot[i].setGraphics(true);
201 dot[i].initTracking(I);
202 vpImagePoint cog = dot[i].getCog();
205 }
206
208
209 // Update camera parameters
210 robot.getCameraParameters(cam, I);
211 std::cout << "Camera intrinsic parameters: \n" << cam << std::endl;
212
213 // Sets the current position of the visual feature
214 vpFeaturePoint p[4];
215 for (size_t i = 0; i < dot.size(); i++)
216 vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
217
218 // Set the position of the square target in a frame which origin is
219 // centered in the middle of the square
220 std::vector<vpPoint> point(4);
221 point[0].setWorldCoordinates(-L, -L, 0);
222 point[1].setWorldCoordinates(L, -L, 0);
223 point[2].setWorldCoordinates(L, L, 0);
224 point[3].setWorldCoordinates(-L, L, 0);
225
226 // Compute target initial pose
228 compute_pose(point, dot, cam, cMo, true);
229 std::cout << "Initial camera pose (cMo): \n" << cMo << std::endl;
230
231 // Initialise a desired pose to compute s*, the desired 2D point features
232 vpHomogeneousMatrix cMo_d(vpTranslationVector(0, 0, 0.5), // tz = 0.5 meter
233 vpRotationMatrix()); // no rotation
234
235 // Sets the desired position of the 2D visual feature
236 vpFeaturePoint pd[4];
237 // Compute the desired position of the features from the desired pose
238 for (int i = 0; i < 4; i++) {
239 vpColVector cP, p;
240 point[i].changeFrame(cMo_d, cP);
241 point[i].projection(cP, p);
242
243 pd[i].set_x(p[0]);
244 pd[i].set_y(p[1]);
245 pd[i].set_Z(cP[2]);
246 }
247
248 // We want to see a point on a point
249 for (size_t i = 0; i < dot.size(); i++)
250 task.addFeature(p[i], pd[i]);
251
252 // Set the proportional gain
253 task.setLambda(0.3);
254
255 // Define the task
256 // - we want an eye-in-hand control law
257 // - articular velocity are computed
260
262 robot.get_cVe(cVe);
263 task.set_cVe(cVe);
264
265 // Set the Jacobian (expressed in the end-effector frame)
266 vpMatrix eJe;
267 robot.get_eJe(eJe);
268 task.set_eJe(eJe);
269 task.print();
270
271 // Initialise the velocity control of the robot
273
274 std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;
275 for (;;) {
276 // Acquire a new image from the camera
277 g.acquire(I);
278
279 // Display this image
281
282 try {
283 // For each point...
284 for (size_t i = 0; i < dot.size(); i++) {
285 // Achieve the tracking of the dot in the image
286 dot[i].track(I);
287 // Display a green cross at the center of gravity position in the
288 // image
289 vpImagePoint cog = dot[i].getCog();
291 }
292 } catch (...) {
293 std::cout << "Error detected while tracking visual features.." << std::endl;
294 break;
295 }
296
297 // During the servo, we compute the pose using LOWE method. For the
298 // initial pose used in the non linear minimisation we use the pose
299 // computed at the previous iteration.
300 compute_pose(point, dot, cam, cMo, false);
301
302 for (size_t i = 0; i < dot.size(); i++) {
303 // Update the point feature from the dot location
304 vpFeatureBuilder::create(p[i], cam, dot[i]);
305 // Set the feature Z coordinate from the pose
306 vpColVector cP;
307 point[i].changeFrame(cMo, cP);
308
309 p[i].set_Z(cP[2]);
310 }
311
312 // Get the jacobian of the robot
313 robot.get_eJe(eJe);
314 // Update this jacobian in the task structure. It will be used to
315 // compute the velocity skew (as an articular velocity) qdot = -lambda *
316 // L^+ * cVe * eJe * (s-s*)
317 task.set_eJe(eJe);
318
319 // Compute the visual servoing skew vector
321
322 // Display the current and desired feature points in the image display
323 vpServoDisplay::display(task, cam, I);
324
325 // Apply the computed joint velocities to the robot
327
328 // Save velocities applied to the robot in the log file
329 // v[0], v[1], v[2] correspond to joint translation velocities in m/s
330 // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
331 flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
332
333 // Get the measured joint velocities of the robot
334 vpColVector qvel;
336 // Save measured joint velocities of the robot in the log file:
337 // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
338 // velocities in m/s
339 // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
340 // velocities in rad/s
341 flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
342
343 // Get the measured joint positions of the robot
344 vpColVector q;
345 robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
346 // Save measured joint positions of the robot in the log file
347 // - q[0], q[1], q[2] correspond to measured joint translation
348 // positions in m
349 // - q[3], q[4], q[5] correspond to measured joint rotation
350 // positions in rad
351 flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
352
353 // Save feature error (s-s*) for the 4 feature points. For each feature
354 // point, we have 2 errors (along x and y axis). This error is
355 // expressed in meters in the camera frame
356 flog << (task.getError()).t() << std::endl;
357
358 vpDisplay::displayText(I, 10, 10, "Click to quit...", vpColor::red);
359 if (vpDisplay::getClick(I, false))
360 break;
361
362 // Flush the display
364
365 // std::cout << "\t\t || s - s* || = " << ( task.getError()
366 // ).sumSquare() << std::endl;
367 }
368
369 std::cout << "Display task information: " << std::endl;
370 task.print();
371 flog.close(); // Close the log file
372 return EXIT_SUCCESS;
373 } catch (const vpException &e) {
374 flog.close(); // Close the log file
375 std::cout << "Catched an exception: " << e.getMessage() << std::endl;
376 return EXIT_FAILURE;
377 }
378}
379
380#else
381int main()
382{
383 std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
384 return EXIT_SUCCESS;
385}
386#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
static const vpColor red
Definition: vpColor.h:217
static const vpColor blue
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:220
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emited by ViSP classes.
Definition: vpException.h:72
const char * getMessage() const
Definition: vpException.cpp:90
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:631
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:420
static std::string getUserName()
Definition: vpIoTools.cpp:316
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:570
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:154
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:81
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
@ DEMENTHON
Definition: vpPose.h:86
@ LAGRANGE
Definition: vpPose.h:85
@ LOWE
Definition: vpPose.h:87
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
Definition: vpPose.cpp:336
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void get_eJe(vpMatrix &eJe)
Control of Irisa's Viper S650 robot named Viper650.
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Implementation of a rotation matrix and operations on such kind of matrices.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:159
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:448
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:506
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
@ PSEUDO_INVERSE
Definition: vpServo.h:202
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that consider the case of a translation vector.
vpVelocityTwistMatrix get_cVe() const
Definition: vpUnicycle.h:82
@ TOOL_PTGREY_FLEA2_CAMERA
Definition: vpViper650.h:129