Visual Servoing Platform version 3.5.0
servoFrankaPBVS.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Data acquisition with RealSense RGB-D sensor and Franka robot.
33 *
34 *****************************************************************************/
35
59#include <iostream>
60
61#include <visp3/core/vpCameraParameters.h>
62#include <visp3/gui/vpDisplayGDI.h>
63#include <visp3/gui/vpDisplayX.h>
64#include <visp3/io/vpImageIo.h>
65#include <visp3/sensor/vpRealSense2.h>
66#include <visp3/robot/vpRobotFranka.h>
67#include <visp3/detection/vpDetectorAprilTag.h>
68#include <visp3/visual_features/vpFeatureThetaU.h>
69#include <visp3/visual_features/vpFeatureTranslation.h>
70#include <visp3/vs/vpServo.h>
71#include <visp3/vs/vpServoDisplay.h>
72#include <visp3/gui/vpPlot.h>
73
74#if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && \
75 (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && defined(VISP_HAVE_FRANKA)
76
77void display_point_trajectory(const vpImage<unsigned char> &I, const std::vector<vpImagePoint> &vip,
78 std::vector<vpImagePoint> *traj_vip)
79{
80 for (size_t i = 0; i < vip.size(); i++) {
81 if (traj_vip[i].size()) {
82 // Add the point only if distance with the previous > 1 pixel
83 if (vpImagePoint::distance(vip[i], traj_vip[i].back()) > 1.) {
84 traj_vip[i].push_back(vip[i]);
85 }
86 }
87 else {
88 traj_vip[i].push_back(vip[i]);
89 }
90 }
91 for (size_t i = 0; i < vip.size(); i++) {
92 for (size_t j = 1; j < traj_vip[i].size(); j++) {
93 vpDisplay::displayLine(I, traj_vip[i][j - 1], traj_vip[i][j], vpColor::green, 2);
94 }
95 }
96}
97
98int main(int argc, char **argv)
99{
100 double opt_tagSize = 0.120;
101 std::string opt_robot_ip = "192.168.1.1";
102 std::string opt_eMc_filename = "";
103 bool display_tag = true;
104 int opt_quad_decimate = 2;
105 bool opt_verbose = false;
106 bool opt_plot = false;
107 bool opt_adaptive_gain = false;
108 bool opt_task_sequencing = false;
109 double convergence_threshold_t = 0.0005, convergence_threshold_tu = vpMath::rad(0.5);
110
111 for (int i = 1; i < argc; i++) {
112 if (std::string(argv[i]) == "--tag_size" && i + 1 < argc) {
113 opt_tagSize = std::stod(argv[i + 1]);
114 }
115 else if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
116 opt_robot_ip = std::string(argv[i + 1]);
117 }
118 else if (std::string(argv[i]) == "--eMc" && i + 1 < argc) {
119 opt_eMc_filename = std::string(argv[i + 1]);
120 }
121 else if (std::string(argv[i]) == "--verbose") {
122 opt_verbose = true;
123 }
124 else if (std::string(argv[i]) == "--plot") {
125 opt_plot = true;
126 }
127 else if (std::string(argv[i]) == "--adaptive_gain") {
128 opt_adaptive_gain = true;
129 }
130 else if (std::string(argv[i]) == "--task_sequencing") {
131 opt_task_sequencing = true;
132 }
133 else if (std::string(argv[i]) == "--quad_decimate" && i + 1 < argc) {
134 opt_quad_decimate = std::stoi(argv[i + 1]);
135 }
136 else if (std::string(argv[i]) == "--no-convergence-threshold") {
137 convergence_threshold_t = 0.;
138 convergence_threshold_tu = 0.;
139 }
140 else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
141 std::cout << argv[0] << " [--ip <default " << opt_robot_ip << ">] [--tag_size <marker size in meter; default " << opt_tagSize << ">] [--eMc <eMc extrinsic file>] "
142 << "[--quad_decimate <decimation; default " << opt_quad_decimate << ">] [--adaptive_gain] [--plot] [--task_sequencing] [--no-convergence-threshold] [--verbose] [--help] [-h]"
143 << "\n";
144 return EXIT_SUCCESS;
145 }
146 }
147
148 vpRobotFranka robot;
149
150 try {
151 robot.connect(opt_robot_ip);
152
153 vpRealSense2 rs;
154 rs2::config config;
155 unsigned int width = 640, height = 480;
156 config.enable_stream(RS2_STREAM_COLOR, 640, 480, RS2_FORMAT_RGBA8, 30);
157 config.enable_stream(RS2_STREAM_DEPTH, 640, 480, RS2_FORMAT_Z16, 30);
158 config.enable_stream(RS2_STREAM_INFRARED, 640, 480, RS2_FORMAT_Y8, 30);
159 rs.open(config);
160
161 // Get camera extrinsics
162 vpPoseVector ePc;
163 // Set camera extrinsics default values
164 ePc[0] = 0.0337731; ePc[1] = -0.00535012; ePc[2] = -0.0523339;
165 ePc[3] = -0.247294; ePc[4] = -0.306729; ePc[5] = 1.53055;
166
167 // If provided, read camera extrinsics from --eMc <file>
168 if (!opt_eMc_filename.empty()) {
169 ePc.loadYAML(opt_eMc_filename, ePc);
170 }
171 else {
172 std::cout << "Warning, opt_eMc_filename is empty! Use hard coded values." << "\n";
173 }
174 vpHomogeneousMatrix eMc(ePc);
175 std::cout << "eMc:\n" << eMc << "\n";
176
177 // Get camera intrinsics
179 std::cout << "cam:\n" << cam << "\n";
180
181 vpImage<unsigned char> I(height, width);
182
183#if defined(VISP_HAVE_X11)
184 vpDisplayX dc(I, 10, 10, "Color image");
185#elif defined(VISP_HAVE_GDI)
186 vpDisplayGDI dc(I, 10, 10, "Color image");
187#endif
188
191 //vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::BEST_RESIDUAL_VIRTUAL_VS;
192 vpDetectorAprilTag detector(tagFamily);
193 detector.setAprilTagPoseEstimationMethod(poseEstimationMethod);
194 detector.setDisplayTag(display_tag);
195 detector.setAprilTagQuadDecimate(opt_quad_decimate);
196
197 // Servo
198 vpHomogeneousMatrix cdMc, cMo, oMo;
199
200 // Desired pose to reach
201 vpHomogeneousMatrix cdMo( vpTranslationVector(0, 0, opt_tagSize * 3), // 3 times tag with along camera z axis
202 vpRotationMatrix( {1, 0, 0, 0, -1, 0, 0, 0, -1} ) );
203
204 cdMc = cdMo * cMo.inverse();
207 t.buildFrom(cdMc);
208 tu.buildFrom(cdMc);
209
212
213 vpServo task;
214 task.addFeature(t, td);
215 task.addFeature(tu, tud);
218
219 if (opt_adaptive_gain) {
220 vpAdaptiveGain lambda(1.5, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
221 task.setLambda(lambda);
222 }
223 else {
224 task.setLambda(0.5);
225 }
226
227 vpPlot *plotter = nullptr;
228 int iter_plot = 0;
229
230 if (opt_plot) {
231 plotter = new vpPlot(2, static_cast<int>(250 * 2), 500, static_cast<int>(I.getWidth()) + 80, 10, "Real time curves plotter");
232 plotter->setTitle(0, "Visual features error");
233 plotter->setTitle(1, "Camera velocities");
234 plotter->initGraph(0, 6);
235 plotter->initGraph(1, 6);
236 plotter->setLegend(0, 0, "error_feat_tx");
237 plotter->setLegend(0, 1, "error_feat_ty");
238 plotter->setLegend(0, 2, "error_feat_tz");
239 plotter->setLegend(0, 3, "error_feat_theta_ux");
240 plotter->setLegend(0, 4, "error_feat_theta_uy");
241 plotter->setLegend(0, 5, "error_feat_theta_uz");
242 plotter->setLegend(1, 0, "vc_x");
243 plotter->setLegend(1, 1, "vc_y");
244 plotter->setLegend(1, 2, "vc_z");
245 plotter->setLegend(1, 3, "wc_x");
246 plotter->setLegend(1, 4, "wc_y");
247 plotter->setLegend(1, 5, "wc_z");
248 }
249
250 bool final_quit = false;
251 bool has_converged = false;
252 bool send_velocities = false;
253 bool servo_started = false;
254 std::vector<vpImagePoint> *traj_vip = nullptr; // To memorize point trajectory
255
256 static double t_init_servo = vpTime::measureTimeMs();
257
258 robot.set_eMc(eMc); // Set location of the camera wrt end-effector frame
260
261 while (!has_converged && !final_quit) {
262 double t_start = vpTime::measureTimeMs();
263
264 rs.acquire(I);
265
267
268 std::vector<vpHomogeneousMatrix> cMo_vec;
269 detector.detect(I, opt_tagSize, cam, cMo_vec);
270
271 std::stringstream ss;
272 ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
273 vpDisplay::displayText(I, 20, 20, ss.str(), vpColor::red);
274
275 vpColVector v_c(6);
276
277 // Only one tag is detected
278 if (cMo_vec.size() == 1) {
279 cMo = cMo_vec[0];
280
281 static bool first_time = true;
282 if (first_time) {
283 // Introduce security wrt tag positionning in order to avoid PI rotation
284 std::vector<vpHomogeneousMatrix> v_oMo(2), v_cdMc(2);
285 v_oMo[1].buildFrom(0, 0, 0, 0, 0, M_PI);
286 for (size_t i = 0; i < 2; i++) {
287 v_cdMc[i] = cdMo * v_oMo[i] * cMo.inverse();
288 }
289 if (std::fabs(v_cdMc[0].getThetaUVector().getTheta()) < std::fabs(v_cdMc[1].getThetaUVector().getTheta())) {
290 oMo = v_oMo[0];
291 }
292 else {
293 std::cout << "Desired frame modified to avoid PI rotation of the camera" << std::endl;
294 oMo = v_oMo[1]; // Introduce PI rotation
295 }
296 }
297
298 // Update visual features
299 cdMc = cdMo * oMo * cMo.inverse();
300 t.buildFrom(cdMc);
301 tu.buildFrom(cdMc);
302
303 if (opt_task_sequencing) {
304 if (! servo_started) {
305 if (send_velocities) {
306 servo_started = true;
307 }
308 t_init_servo = vpTime::measureTimeMs();
309 }
310 v_c = task.computeControlLaw((vpTime::measureTimeMs() - t_init_servo)/1000.);
311 }
312 else {
313 v_c = task.computeControlLaw();
314 }
315
316 // Display desired and current pose features
317 vpDisplay::displayFrame(I, cdMo * oMo, cam, opt_tagSize / 1.5, vpColor::yellow, 2);
318 vpDisplay::displayFrame(I, cMo, cam, opt_tagSize / 2, vpColor::none, 3);
319 // Get tag corners
320 std::vector<vpImagePoint> vip = detector.getPolygon(0);
321 // Get the tag cog corresponding to the projection of the tag frame in the image
322 vip.push_back(detector.getCog(0));
323 // Display the trajectory of the points
324 if (first_time) {
325 traj_vip = new std::vector<vpImagePoint> [vip.size()];
326 }
327 display_point_trajectory(I, vip, traj_vip);
328
329 if (opt_plot) {
330 plotter->plot(0, iter_plot, task.getError());
331 plotter->plot(1, iter_plot, v_c);
332 iter_plot++;
333 }
334
335 if (opt_verbose) {
336 std::cout << "v_c: " << v_c.t() << std::endl;
337 }
338
340 vpThetaUVector cd_tu_c = cdMc.getThetaUVector();
341 double error_tr = sqrt(cd_t_c.sumSquare());
342 double error_tu = vpMath::deg(sqrt(cd_tu_c.sumSquare()));
343
344 ss.str("");
345 ss << "error_t: " << error_tr;
346 vpDisplay::displayText(I, 20, static_cast<int>(I.getWidth()) - 150, ss.str(), vpColor::red);
347 ss.str("");
348 ss << "error_tu: " << error_tu;
349 vpDisplay::displayText(I, 40, static_cast<int>(I.getWidth()) - 150, ss.str(), vpColor::red);
350
351 if (opt_verbose)
352 std::cout << "error translation: " << error_tr << " ; error rotation: " << error_tu << std::endl;
353
354 if (error_tr < convergence_threshold_t && error_tu < convergence_threshold_tu) {
355 has_converged = true;
356 std::cout << "Servo task has converged" << std::endl;;
357 vpDisplay::displayText(I, 100, 20, "Servo task has converged", vpColor::red);
358 }
359
360 if (first_time) {
361 first_time = false;
362 }
363 } // end if (cMo_vec.size() == 1)
364 else {
365 v_c = 0;
366 }
367
368 if (!send_velocities) {
369 v_c = 0;
370 }
371
372 // Send to the robot
374
375 ss.str("");
376 ss << "Loop time: " << vpTime::measureTimeMs() - t_start << " ms";
377 vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
379
381 if (vpDisplay::getClick(I, button, false)) {
382 switch (button) {
384 send_velocities = !send_velocities;
385 break;
386
388 final_quit = true;
389 v_c = 0;
390 break;
391
392 default:
393 break;
394 }
395 }
396 }
397 std::cout << "Stop the robot " << std::endl;
399
400 if (opt_plot && plotter != nullptr) {
401 delete plotter;
402 plotter = nullptr;
403 }
404
405 if (!final_quit) {
406 while (!final_quit) {
407 rs.acquire(I);
409
410 vpDisplay::displayText(I, 20, 20, "Click to quit the program.", vpColor::red);
411 vpDisplay::displayText(I, 40, 20, "Visual servo converged.", vpColor::red);
412
413 if (vpDisplay::getClick(I, false)) {
414 final_quit = true;
415 }
416
418 }
419 }
420
421 if (traj_vip) {
422 delete [] traj_vip;
423 }
424 }
425 catch(const vpException &e) {
426 std::cout << "ViSP exception: " << e.what() << std::endl;
427 std::cout << "Stop the robot " << std::endl;
429 return EXIT_FAILURE;
430 }
431 catch(const franka::NetworkException &e) {
432 std::cout << "Franka network exception: " << e.what() << std::endl;
433 std::cout << "Check if you are connected to the Franka robot"
434 << " or if you specified the right IP using --ip command line option set by default to 192.168.1.1. " << std::endl;
435 return EXIT_FAILURE;
436 }
437 catch(const std::exception &e) {
438 std::cout << "Franka exception: " << e.what() << std::endl;
439 return EXIT_FAILURE;
440 }
441
442 return 0;
443}
444#else
445int main()
446{
447#if !defined(VISP_HAVE_REALSENSE2)
448 std::cout << "Install librealsense-2.x" << std::endl;
449#endif
450#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
451 std::cout << "Build ViSP with c++11 or higher compiler flag (cmake -DUSE_CXX_STANDARD=11)." << std::endl;
452#endif
453#if !defined(VISP_HAVE_FRANKA)
454 std::cout << "Install libfranka." << std::endl;
455#endif
456 return 0;
457}
458#endif
Adaptive gain computation.
static bool loadYAML(const std::string &filename, vpArray2D< Type > &A, char *header=NULL)
Definition: vpArray2D.h:652
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
static const vpColor red
Definition: vpColor.h:217
static const vpColor none
Definition: vpColor.h:229
static const vpColor yellow
Definition: vpColor.h:225
static const vpColor green
Definition: vpColor.h:220
@ TAG_36h11
AprilTag 36h11 pattern (recommended)
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:129
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayLine(const vpImage< unsigned char > &I, const vpImagePoint &ip1, const vpImagePoint &ip2, const vpColor &color, unsigned int thickness=1, bool segment=true)
static void flush(const vpImage< unsigned char > &I)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0))
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emited by ViSP classes.
Definition: vpException.h:72
const char * what() const
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Class that defines the translation visual feature .
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpThetaUVector getThetaUVector() const
vpHomogeneousMatrix inverse() const
vpTranslationVector getTranslationVector() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static double distance(const vpImagePoint &iP1, const vpImagePoint &iP2)
unsigned int getWidth() const
Definition: vpImage.h:246
static double rad(double deg)
Definition: vpMath.h:110
static double deg(double rad)
Definition: vpMath.h:103
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:116
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:206
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:547
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:286
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:498
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
void acquire(vpImage< unsigned char > &grey, double *ts=NULL)
vpCameraParameters getCameraParameters(const rs2_stream &stream, vpCameraParameters::vpCameraParametersProjType type=vpCameraParameters::perspectiveProjWithDistortion, int index=-1) const
bool open(const rs2::config &cfg=rs2::config())
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
@ STATE_STOP
Stops robot motion especially in velocity and acceleration control.
Definition: vpRobot.h:65
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Implementation of a rotation matrix and operations on such kind of matrices.
double sumSquare() const
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Implementation of a rotation vector as axis-angle minimal representation.
Class that consider the case of a translation vector.
VISP_EXPORT double measureTimeMs()